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ABSTRACT
The article proposes an exact approach to finding the global solution
of a nonconvex semivectorial bilevel optimization problem, where
the objective functions at each level are pseudoconvex, and the con-
straints are quasiconvex. Due to its non-convexity, this problem is
challenging, but it attracts more and more interest because of its
practical applications. The algorithm is developed based on mono-
tonic optimization combinedwith a recent neurodynamic approach,
where the solution set of the lower-level problem is inner approxi-
mated by copolyblocks in outcome space. From that, the upper-level
problem is solved using the branch-and-bound method. Finding
the bounds is converted to pseudoconvex programming problems,
which are solved using the neurodynamic method. The algorithm’s
convergence is proved, and computational experiments are imple-
mented to demonstrate the accuracy of the proposed approach.
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1. Introduction

The bilevel optimization problem was first examined with mathematical models by
Bracken and McGill [7], following a formulation in the form of the Stackelberg game [13].
The focal difference between them and the prevalent single-level optimization problem is
the hierarchical structure of the problem, where constraints for an optimization problem
are affected by another problem. The affected problem is the lower-level problem, while the
other is the upper-level problem. Despite getting more attention lately, it has been crucial
because of its application to practical problems.

Unlike single-level optimization problems, which can be imagined as one agent trying
to achieve objectives alone, bilevel ones are more like two agents interacting with each
other by their former decisions while achieving objectives. Furthermore, since the major-
ity of realistic problems are affected by many agents, the number of bilevel optimization
research has increased quickly in the last decades, and they have spread in all fields of
application. Some practical ones such as the Nash equilibrium problem in economics,
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optimal operation control problem [18], management problem in supply chain systems
[12,24], traffic and transportation network design problem [2,40], machine learning prob-
lem [11,25],. . .There are two main ways to classify bilevel optimization problems. One
considers their type of functions, such as linear, convex, nonconvex, or discrete ones. Oth-
ers consider the context of the problem, like cooperating with the optimistic problem
in contrast to the pessimistic problem, optimization over the efficient set, multiobjec-
tive bilevel optimization problem, multi leaders/followers problem, bilevel with fuzzy
and stochastic extension. Although in different contexts, they still share the same bilevel
optimization formation.

In the method aspect, exact algorithms with classic approaches were researched for
decades, in contrast to the heuristic group with later approaches. The exact methods
that should be mentioned are extreme-point approaches, branch-and-bound, comple-
mentary pivoting, descent methods, penalty function methods, or trust-region methods.
The heuristic groups contain evolutionary, local search-based, or neural network-based
approaches. Lu et al. wrote a conscientious survey about these approaches (see [23]).

This paper considers a bilevel optimization problem in the form of optimization over an
efficient set scenario. Also, in the lower-level problem, we examine vector function, a mul-
tiobjective optimization problem that makes an overall formulation called semivectorial
bilevel optimization. This topic has been researched for years, with the main target being
linear functions or convex ones in lower level or upper level [4,15–17,20,28–30]. Popular
approaches were the penalty method, which converts the problem into a single-level opti-
mization problem [10,20,41], and the branch-and-bound method, which solves iterated
relaxed subproblems for boundings [4,15,28]. Recently, there have been some nonconvex
ones, such as [27,32], but the algorithms are all developed using heuristic methods. Our
research considers pseudoconvex objective functions on both levels and proposes a novel
algorithm. By utilizing the nice properties of functions, the algorithm is developed based
on monotonic optimization combined with a recent neurodynamic approach, where the
solution set of the lower-level problem is inner approximated by copolyblocks in outcome
space. Afterwards, the branch-and-bound technique is used to resolve the upper-level
problem. The neurodynamic approach is then used to solve the resulting pseudoconvex
programming problem for finding the bounds.

In the next section, we present the equivalent outcome space problem of the considered
one. Section 3 gives somemathematics bases for building the proposed algorithm. Section 4
presents the proposed algorithm. We prove the algorithm’s convergence in Section 5
before showing some special cases of the upper-level objective function. Computational
experiments are shown in Section 6, and the conclusion is ended in the last section.

2. Preliminaries

2.1. Notations and definitions

The positive orthant cone in p-dimension space and its interior are denoted as Rm+ := {x ∈
Rp | x ≥ 0} and int Rm+, respectively. Let’s recall the definition of nondominated point by
considering two vectors a, b ∈ Rp, where a ≤ b if all components ai ≤ bi, i = 1, 2, . . . , p
and similarly a<b if ai < bi for all i = 1, 2, . . . , p. Let Q ⊂ Rp be some nonempty set. A
point q inQ is considered an nondominated point if there is no other point q′ inQ such that
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q′ is less than or equal to q. Similarly, a point q in Q is considered a weakly nondominated
point if there is no other point q′ inQ such that q′ is less than q. The set of all nondominated
points andweakly nondominated points ofQ are denotedMinQ andWMinQ, respectively.

Definition 2.1 (Clarke [9]): Suppose ϕ is a function that maps fromRn toR and is locally
Lipschitz near a point x in Rn. We can define the generalized directional derivative of ϕ at
x, in the direction of a vector v in Rn, as follows

ϕ◦(x; v) = lim sup
y→x,t↓0

ϕ(y+ tv)− ϕ(y)
t

.

The Clarke’s generalized subgradient of ϕ at x is given by ∂ϕ(x) = {ξ ∈ Rn : ϕ◦(x; v) ≥
ξTv, forall v in Rn}.

Definition 2.2 (Clarke [9]): Suppose that ϕ : Rn→ R is locally Lipschitz near x ∈ Rn.
The one-side directional derivative for any direction v ∈ Rn is defined by

ϕ′(x; v) = lim
t↓0

ϕ(x+ tv)− ϕ(x)
t

,

and we say ϕ is regular at x, if the one-side directional derivative exists and for all v ∈
Rn, ϕ◦(x; v) = ϕ′(x; v). Moreover, ϕ is considered regular on Rn provided ϕ is regular at
any x ∈ Rn.

Definition 2.3 (Clarke [9]): Let S ⊆ Rn be a convex set. A function ϕ : S→ R is said
to be a real-valued convex function provided that, for all x, x′ ∈ S and λ ∈ [0, 1], one has
ϕ(λx+ (1− λ)x′) ≤ λϕ(x)+ (1− λ)ϕ(x′). If ϕ : S→ R is convex, then ∂ϕ(x) = {ξ ∈
Rn : ϕ(x)− ϕ(x′) ≤ ξT(x− x′), forall x′ ∈ Rn}.

It’s important to know that convex functions are regular, as stated in Proposition 2.3.6
in Clarke’s work [9].

Definition 2.4 (Cambini &Martein [1]): Let G : Rn→ R be locally Lipschitz, then

(1) G is pseudoconvex if for any x, x̃ ∈ Rn, ∃ ξ ∈ ∂G(x) : ξ�(x̃− x) ≥ 0⇒ G(x̃) ≥
G(x);

(2) G is quasiconvex if for any x, x̃ ∈ Rn and λ ∈ [0, 1], G(λx+ (1− λ)x̃) ≤
max{G(x),G(x̃)}.

Theorem 2.5 (Cambini & Martein [1]): Let z(x) = f (x)
g(x) be the ratio of two differentiable

functions f and g defined on an open convex set S ⊂ Rn.

(1) If f is a convex function and g is both positive and affine, then z is a pseudoconvex
function;

(2) If f is non-negative and convex, and g is positive and concave, then z is pseudoconvex;
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Theorem2.6 (Carosi&Martein [8]): Consider the ratio function h(x) = 1
2

xTAx
(bTx+b0)3 where

A is a non-zero n× n symmetric matrix, b ∈ Rn and b ∈ R. The function h is pseudoconvex
on S = {x ∈ Rn : bTx+ b0 > 0} if and only if h is of the following form:

h(x) = 1
2

μ(bTx)2

(bTx+ b0)3
where b0 < 0.

2.2. Problem formulation

The pseudoconvex semivectorial bilevel optimization problem under consideration can be
expressed in the following manner

min h(x, y) (BP)

s.t. g(x, y) ≤ 0, y ∈ Rm+,
x ∈ Argmin {f (x) | x ∈ X},

where it will be assumed that

(A1) X = {x ∈ Rn | s(x) ≤ 0} is a nonempty bounded and convex set;
(A2) The real-valued function h : Rm × Rn→ R is continuous and the vector-valued

functions g : Rm × Rn→ R�, f : Rn→ Rp, s : Rn→ Rq are continuously differen-
tiable, where the integer numbersm, n, �, p, q ≥ 2;

(A3) The objective functions h, f are pseudoconvex and regular;
(A4) The constraint functions g, s are quasiconvex.

In the above formulation, the scalar function h is called the upper-level objective
function, and the vectorial function f = (f1, f2, . . . , fp) is called the lower-level objective
function. Recall that for the vector optimization problem

Min f (x)

s.t. x ∈ X,

a feasible solution x̄ is said to be an efficient solution (resp., weakly efficient solution) of
this problem if there is no solution x ∈ X such that f (x) ≤ f (x̄) and f (x̄) �= f (x) (resp.,
f (x) < f (x̄)) (see [36]). For convenience, as usual, we denote XWE as the weakly efficient
solution set of the vector optimization problemMin{f (x)|x ∈ X}. Therefore, the constraint
x ∈ Argmin{f (x) | x ∈ X} can be replaced by x ∈ XWE.

Problem (BP) covers a large class of complex nonconvex optimization problems, such
as nonconvex multiplicative programming, optimization over the efficient set, and meta-
learning problems in machine learning [11,14,25,38]. The restricted form of (BP) for opti-
mizing over the efficient set has been studied in some previous work such as [19,33–35,39]
with the effective algorithms.
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2.3. Neurodynamicmethod for solving nonsmooth pseudoconvex programming
problem

We now consider a pseudoconvex programming problem as follows:

min r(x) (SQ)

s.t. x ∈ X,

where the objective function r(x) : Rn→ R is nonsmooth pseudoconvex, the constraint
set X = {x ∈ Rn | s(x) ≤ 0}, s(x) : Rn→ Rm and si(i = 1, . . . ,m) : Rn→ R are quasi-
convex and differentiable.

To tackle this problem, we employ the neurodynamic approach introduced by Liu et al.
[22]. This method differs from others such as [6,21,26,42] because it permits using qua-
siconvex functions for inequality constraints. Even though the zero-level sets of both
quasiconvex and convex functions are convex and a quasiconvex constraint can be sub-
stituted with an equivalent convex one, identifying such a replacement is typically not
straightforward.

To solve Problem (SQ), Liu initially defines the set-valued function � : R ⇒ [0, 1],
which is characterized by:

�(ξ) =
⎧⎨
⎩
1, ξ > 0;
[0, 1], ξ = 0;
0, ξ < 0.

(1)

In fact, �(ξ) = ∂ max{0, ξ}, and � is upper semicontinuous on R. Define the following
function:

Sm(x) =
m∑
i=1

max{0, si(x)}, (2)

where si(x), i = 1, 2, . . . ,m are given in (SQ). The closed-form for ∂Sm(x) is derived as

∂Sm(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ∈ int (X);∑
i∈I0(x)

[0, 1]∂si(x), x ∈ bd (X);
∑

i∈I+(x)
∂si(x)+

∑
i∈I0(x)

[0, 1]∂si(x), x /∈ X,

where I+(x) = {i ∈ {1, 2, . . . ,m} : si(x) > 0}, I0(x) = {i ∈ {1, 2, . . . ,m} : si(x) = 0},
int (X) and bd (X) denote the interior and boundary of the feasible set X, respectively.

The neurodynamic model for solving Problem (SQ) is described in the form of a
dynamic system as follows:⎧⎨

⎩
x(0) ∈ X;
d
dt
x(t) ∈ −c(x(t))∂r(x(t))− ∂S(x(t)), (3)

where

c(x(t)) =
{ m∏
i=1

ci(t) | ci(t) ∈ 1−�(si(x(t))), i = 1, 2, . . . ,m

}
. (4)
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In the neurodynamic model (3), the state x(0) is any initial state within X. The second
expression is specified from the gradient descent method where the−∂S(x(t)) term serves
to steer the state towards the feasible region X, while the term−∂r(x(t)) causes the state to
follow a descent direction of the objective function r. The c(x(t)) term adjusts the step-size
of the state in the model (3). If the state is outside of X, the model will direct it towards X.
However, if the state is withinX, themodel will direct it towards a feasible descent direction
of r.

Theorem 2.7 ([22, Theorem 4.3]): The state x(t) of neural network (3)with any x(0) ∈ X,
converges to an optimal solution of Problem (SQ).

3. The equivalent problem in outcome space

We denote the outcome set Z := {z ∈ Rp | z = f (x), x ∈ X} and G = {(x, y) | x ∈ X, y ∈
Rm+, g(x, y) ≤ 0}. SinceX is bounded and f consists of continuous functions,Z is bounded.
We thus can find a box [ω,	] which contains Z , i.e. ω ≤ Z ≤ 	. To determine ω, it is
sufficient to solve the following problems for each component ωi, i = 1, 2, . . . , p,

min fi(x), s.t. x ∈ X. (Pωi )

Since fi(x) is a pseudoconvex function, any local minimum of the above equation is also a
global optimum [3]. It is straightforward to apply the neurodynamic model presented in
Section 2.3 to (Pωi ) as follows:⎧⎨

⎩
x(0) ∈ X;
d
dt
x(t) ∈ −c(x(t))∂fi(x(t))− ∂Sm(x(t)),

Solve (Pωi )

where Sm(x), c(x(t)) are defined from (2) and (4). However, a similar reasoning cannot be
applied to find	 because the problem max{fi(x), s.t. x ∈ X}maximizing a pseudoconvex
function over a convex set that is nonconvex. For that purpose, we boundX in a simplex

with vertex setV(
) = {
0,
1, . . . ,
n}, where
0 = (
0

1,

0
2, . . . ,


0
n) ∈ Rnwith
0

i =
minx∈X xi, i = 1, 2, . . . , n and
i = (
i

1,

i
2, . . . ,


i
n), i = 1, 2, . . . , n are defined by


i
k =

⎧⎪⎨
⎪⎩

0

k, if k �= i;
U −

∑
j�=k


0
j , if k = i,

whereU is the optimal value of the problem:max{〈e, x〉 | x ∈ X}, e ∈ Rn, e = (1, 1, . . . , 1)T .
This definition, combined with the fact that f is a pseudoconvex function, leads to X ⊂ 

and, therefore, a way to specify	, such as

	i := max{fi(x) | x ∈ V(
)} (P	i )

= max{fi(x) | x ∈ 
}
≥ max{fi(x) | x ∈ X}, i = 1, 2, . . . , p.

We can see thatZ is not full-dimensional and nonconvex.We therefore defineZ+ := Z +
R
p
+ = {z ∈ Rp | ∃ z0 ∈ Z , z0 ≤ z}which is a full-dimensional convex set. One problem of
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Z+ is that it is not bounded. We then bound the setZ by another equivalently efficient set
denoted as Z�,

Z� := Z+ ∩ (	− Rm+).

The efficient equivalence of Z ,Z+ and Z� is shown in Proposition 3.1 where
MinZ ,MinZ+ and MinZ� denote the efficient sets of Z , Z+ and Z�, respectively.

Proposition 3.1 ([36]): We have

(i) MinZ = MinZ+ = MinZ�;
(ii) WMinZ =WMinZ+ ∩Z =WMinZ� ∩Z .

We will use some concepts of monotonic optimization presented in [36]. A real-
valued function d is said to be increasing (decreasing) over S ⊆ Rn if and only if d(x) ≥
d(y) (d(x) ≤ d(y), ∀ x ∈ y+ Rn+. A setQ ⊂ [ω,	] is called normal if [ω, z] ⊂ Q,∀ z ∈ Q
and conormal if [z,	] ⊂ Q,∀ z ∈ Q. The concept of normal sets and conormal sets in
2-dimensional space is illustrated in Figure 1.

It is obvious thatZ� is a conormal set. We then convert Problem (BP) into a monotonic
problem by constructing a function ϕ : Z� → R as follows

ϕ(z) = min{h(x, y) | (x, y) ∈ G, f (x) ≤ z}. (MP(z))

As we can see, when z increases, ϕ(z) decreases due to the expansion of decision space X,
so ϕ is a decreasing function over the conormal setZ�.

Proposition 3.2: The monotonic Problem (BP) is equivalent to the outcome-space problem

min{ϕ(z) | z ∈WMinZ�}, (OP)

which means that (BP) is solved if and only if (OP) is solved.

Figure 1. A normal set (left) and a conormal set (right) in 2D space.
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Proof: As presented in Section 2.2, the problem (BP) is equivalent to

min{h(x, y) | g(x, y) ≤ 0, x ∈ XWE, y ∈ Rm+},
whose constraints can be rewritten as,

{x ∈ X, y ∈ Rm+ | g(x, y) ≤ 0, f (x) ∈WMinZ}
which can be reduced as follows,

{(x, y) ∈ G | f (x) ∈WMinZ}
= {(x, y) ∈ G | f (x) ∈WMinZ� ∩Z} (by Proposition 3.1(ii))

= {(x, y) ∈ G | f (x) ∈WMinZ� and f (x) ∈ Z},
= {(x, y) ∈ G | f (x) ∈WMinZ�} (*)

On the one hand, suppose z̄ is optimal solution of min{ϕ(z) | z ∈WMinZ�} and (x̄, ȳ)
is optimal solution ofMP(z̄). Since ϕ(z̄) reaches its optimal value at (x̄, ȳ), we get⎧⎪⎨

⎪⎩
ϕ(z̄) = h(x̄, ȳ);
f (x̄) ≤ z̄, z̄ ∈WMinZ�;
h(x̄, ȳ) ≤ h(x, y) ∀ (x, y) ∈ G, f (x) ≤ z̄.

(5)

From the fact that z̄ ∈WMinZ� and f (x) ≤ z̄, it infers f (x) ∈WminZ�. Thus, we have
h(x̄, ȳ) ≤ h(x, y) ∀ (x, y) ∈ G, f (x) ∈WminZ�.

Therefore, by (*),

h(x̄, ȳ) ≤ h(x, y) ∀ (x, y) ∈ G, f (x) ∈WminZ ,

which means that (x̄, ȳ) is also optimal solution of (BP).
On the other hand, suppose we have a solution (x̄, ȳ) of Problem (BP), we then have

f (x̄) ∈WminZ� and ϕ(z) reaches its optimal value if and only if z = f (x̄) implying
min ϕ(z) = ϕ(f (x̄)) implying z = f (x̄) is an optimal solution to (OP). �

4. The branch-and-bound scheme for solving Problem (OP)

4.1. Cutting cones and inner approximations ofZ�

In our previous work [36], it was established that the union of an arbitrary union of normal
(respectively, conormal) sets is itself a normal (respectively, conormal) set. The union of all
normal (respectively, conormal) sets contained inQ is denoted as the normal (respectively,
conormal) hull ofQ, represented byN (Q) (respectively,M(Q)), which is also theminimal
conormal set containing Q. From the definition, we can see that N (Q) := (Q− R

p
+) ∩

[ω,	] andM(Q) = (Q+ R
p
+) ∩ [ω,	].

A polyblockP is defined as the normal hull of a finite set of verticesV within the interval
[ω,	], such thatP =⋃v∈V [ω, v] or equivalentlyP = N (V). A copolyblockP is defined
as the conormal hull of a finite set of vertices V within the interval [ω,	], such that P =
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Figure 2. A polyblock (left) and a copolyblock (right) in 2D space.

⋃
v∈V [v,	] or equivalently P =M(V). The concept of polyblocks and copolyblocks in

2-dimensional space is illustrated in Figure 2.
Let v be a vertex in N (Q), v is proper if �v′ ∈ N (Q) such that v′ �= v and v′ ≥ v. An

improper vertex inN (Q) is not proper. A polyblock is determined by its set of proper ver-
tices as it is the normal hull of its proper vertices. Similarly, a copolyblock is the conormal
hull of its proper vertices where a proper vertex v satisfies �v′ ∈M(Q) such that v′ �= v
and v′ ≤ v.

In our research, we developed an inner approximation algorithm, so instead of deter-
mining an outer copolyblock by its proper verticesV, we regard the proper vertices as ones
of the opposite polyblock and construct the inner copolyblock as follows

L(V) := [ω,	] \ int (N (V)− R
p
+).

For convenience, throughout our paper, copolyblock is understood as one built in this
manner, the inner copolyblock L(V) constructed above generates new proper vertices,
and initial proper vertices V are now called co-proper vertices. Now, we recall some main
properties of copolyblocks in the following proposition.

Proposition 4.1 ([36]): (i) A finite union of copolyblocks is a copolyblock.
(ii) The union of a finite number of conormal sets forms a compact conormal set.
(iii) The intersection of a finite number of copolyblocks forms a compact conormal set.

Proposition 4.2: Given v ∈ Z� and wv determined by Remark 4.1, the new copolyblock P ′
obtained by applying the cutting cone of Z� on P at wv has vertex set V ′, where P is a
copolyblock in the box [ω,	] with co-proper vertex set V such that P ⊆ Z�, and

V ′ = (V \ {v}) ∪ {v− (vi − wi)ei}, i = 1, . . . , p.

According to Proposition 4.1(iii), any compact conormal set can be approximated as
closely as desired by a copolyblock. As a result, a family of copolyblocks can be used
to approximate the compact conormal set Z�. In particular, Proposition 4.2 generates a
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nested sequence of copolyblocks that inner-approximates the outcome set Z�, such that
P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ Pk+1 ⊂ · · · ⊂ Z�, where the initial copolyblock P0 =
[	,	] is constructed by calculating	 as in Section 3.

In each iteration, the process where copolyblock Pk+1 is generated from Pk and the
resulting inner approximation is described in Procedure CopolyblockCut,

Procedure 1: CopolyblockCut

Input: A copolyblock Vk or a set of its vertices, the current considering vertex vk

and the intersection wk of the ray starting from vk along direction d̂ and
∂Z+

Output: The new inner approximate outcome set Vk+1
1 Set Vk+1← Vk \ {vk}.
2 for i← 1 to p do
3 zi = vk − (vki − wk

i )e
i;

4 if zii �= ωi then
5 Vk+1← (Vk+1 ∪ {zi}).

4.2. Brand-and-bound algorithm scheme

Utilizing the outcome space approach, the solution of (BP) is attained by enhancing upper
and lower bounds for the objective function subsequent to each iteration. Furthermore,
the outcome space is approximated recurrently via the cutting cone methodology on inner
copolyblocks. Commencing with copolyblock P0 = [	,	], we construct a sequence of
copolyblocks Pk iteratively such that

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ Pk+1 ⊂ · · · ⊂ Z�.

The subsequent notations shall be employed:

• The set of all co-proper vertices is denoted by Vk which defines the copolyblock Pk =
L(Vk).

• The upper and lower bounds are denoted by αk and βk, respectively.

At the initial step with k = 0, we have V0 = {	},P0 = [	,	],α0 = +∞. In a typical
iteration k, by solving min{ϕ(v) | v ∈ Vk} the lower bound βk is assigned, then we deter-
mine vk such that βk = ϕ(vk). By solving (P2(vk)), we find a new weakly efficient point
zk = f (xk) of the lower problem, after that we find solution yk for problem (BP) with the
xk found, if the problem is feasible, we will obtain a solution (xk, yk). After that we com-
pare h(xk, yk) to αk to update upper bound. If αk and βk satisfy the terminate condition,
meaning that the upper bound is close enough to the lower bound, the algorithm stops
and returns ((xk, yk), h(xk, yk)). Otherwise, a new co-proper vertices setVk+1 is created by
procedure CopolyblockCut, before new inner approximate outcome setPk+1 = L(Vk+1)
is determined, and the next iteration’s upper bound is assigned.
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4.3. Determining the upper bounds

A weakly nondominated point of Z+ can be easily determined by the following remark.

Remark 4.1: Let fix a vector d̂ > 0 in Rn and v an arbitrary point in Rp. Then the
intersection wv of the line through v along direction d̂ can be determined by

wv = v+ tvd̂ (6)

where tv is the optimal value of the following problem

min t

s.t. v+ td̂ ∈ Z+, t ∈ R.
(P0(v))

Lemma 4.3 shows that wv := v+ tvd̂ is a weakly nondominated point of Z+.

Lemma 4.3 ([36, Lemma 2.1]): For any point v in Rp. Then there exists the unique point
wv determined by (6) that is a weakly nondominated point of Z+.

Lemma 4.4 (Clarke [9], Chain rule): Let V(x) : Rn→ R be a regular function and x(t) :
R→ Rn be Lipschitz near t and differentiable at t. Then, for almost every t ∈ [0,+∞), it
holds that V̇(x(t)) = ζTẋ(t) for all ζ ∈ ∂V(x(t)).

Lemma 4.5 (Clarke [9]): Let {fi, i = 1, 2, 3, . . . , n} be a finite set of functions that are
Lipschitz near x and regular. Define ψ(x) = max{fi(x), i = 1, 2, 3, . . . , n}. Then the subd-
ifferential of ψ(x) is given by ∂ψ(x) = conv {∂fi(x), i ∈ I(x)} where I(x) is the set of indices
i such that fi(x) = ψ(x) and ‘conv’ denotes the convex hull of a set.

Lemma 4.6: Given F(x) = max{fi(x) | i = 1, . . . , n} with fi(x) : S→ R being pseudocon-
vex, continuous differential functions. Then F(x) is also a pseudoconvex function.

Proof: Since fi(x), i = 1, n are locally Lipschitz so their subgradient can be expressed as
∂fi(x) = {∇fi(x)}. By Lemma 4.5, we have

∂F(x) = conv {∂fi(x), fi(x) = F(x)}.
By Definition 2.4, for any x, x̃ ∈ S, ∃ ξi ∈ ∂fi(x) : ξ�i (x̃− x) ≥ 0⇒ fi(x̃) ≥ fi(x). Set
I(x) = {i ∈ {1, . . . , n} | fi(x) = F(x)}, we have∑

i∈I(x)
μiξ
�
i (x̃− x) ≥ 0,

∑
i∈I(X)

μi = 1,

and

F(x̃) ≥ F(x).

Therefore, we conclude that F(x) is also a pseudoconvex function by Definition 2.4. �
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We can rewrite (P0(v)) in its explicit form

min t (P1(v))

s.t. f (x)− td̂ − v ≤ 0,

x ∈ X, t ∈ R.

It can be seen that (P1(v)) is, in general, nonconvex. However, it is equivalent to the
following problem

min max

{
fj(x)− vj

d̂j

∣∣∣∣∣ j = 1, . . . , p

}
(P2(v))

s.t. x ∈ X,

which is solvable as the objective function is pseudoconvex according to Lemma 4.6, and
the feasible set is convex.

Lemma 4.7 ([36, Lemma 2.2]): It can be inferred that problems (P0(v)) and (P2(v)) are
equivalent. In other words, if Problem (P0(v)) has an optimal solution (x∗, t∗), then x∗ is the
optimal solution of Problem (P2(v)). Conversely, (P2(v)) has an optimal solution x∗ with the
corresponding optimal value t∗, then (x∗, t∗) is the optimal solution of (P0(v)). Additionally,
it should be noted that Problem (P2(v)) is a pseudoconvex programming problem.

By Lemma 4.7, finding a Pareto solution to Problem (BP) is transformed into finding
the optimal solution to a pseudoconvex programming problem. The gradient descent tech-
nique and the neurodynamic method are two ways to solve quasiconvex programming
problems. Since the objective function of (P2(v)) is nonsmooth even though the function
f is smooth, the neurodynamic approach is used to tackle this problem.

For that, we calculate the subgradient of max{fj(x)−vj
d̂j
| j = 1, . . . , p} with the help of

Lemmas 4.4 and 4.5.
The dynamic system of the problem can then be formulated analogously to the problem

in Section 2.3 by applying the theorems directly to (P2(v)) as follows,

∂ max

{
fj(x)− vj

d̂j

∣∣∣∣∣ j = 1, . . . , p

}
= conv

{
∂
fj(x)− vj

d̂j

∣∣∣∣∣ j ∈ I(x)

}

= conv

{
∂fj(x(t))Tẋ(t)

d̂j

∣∣∣∣∣ j ∈ I(x)

}
.

The second equal sign can be derived directly from Lemma 4.4 and the fact that ∂ vj
d̂j
=

{0} ∀ j ∈ I(x)We then attain the dynamic model for solving (P2(v)),⎧⎪⎨
⎪⎩
x(0) ∈ X;
d
dt
x(t) ∈ −c(x(t))× conv

{
∂fj(x(t))Tẋ(t)

d̂j

∣∣∣∣∣ j ∈ I(x)

}
− ∂Sm(x(t)), (NDP2(v))

where c(x(t),� and Sm(x(t)) is defined in (1), (2) and (4), respectively.
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4.4. Determining the lower bounds

Since h(x, y) is a pseudoconvex function, the subproblem of finding

βk = min
{
ϕ(v) | v ∈ Vk

}
, (LB(Vk))

in the proposed algorithm requires solving (MP(z))where fi are quasiconvex functions (by
pseudoconvexity) and G is a nonempty compact convex set with the quasiconvexity of g in
it. These problems can be handled by the neurodynamic model mentioned in Section 2.3.
We first define function G̃(u) as,

G̃(u) = (s1(x), . . . , sm(x),−y, f1(x)− z1, . . . , fp(x)− zp, g1(x, y), . . . , gl(x, y)
)T , (7)

where u = (x, y)T ∈ Rn+1 and u ∈ G̃ := G ∪ {x ∈ X | f (x) ≤ z}. Analogously to Section
2.3, we then introduce a function G̃m,

G̃m(u) =
m+p+l+1∑

i=1
max{0, G̃i(u)}. (8)

We can calculate subgradient of G̃m(u) as

∂G̃m(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, u ∈ int
(
G̃
)
;∑

i∈I0(u)
[0, 1]∂G̃i(u), u ∈ bd

(
G̃
)
;

∑
i∈I+(u)

∂si(u)+
∑

i∈I0(u)
[0, 1]∂G̃i(u), u /∈ G̃,

where I+(u) = {i ∈ {1, 2, . . . ,m} : G̃i(u) > 0}, I0(u) = {i ∈ {1, 2, . . . ,m} : G̃i(u) = 0},∫
(G̃) and bd (G̃) denote the interior and boundary of the feasible set G̃, respectively.
The neurodynamic model for solving Problem (MP(z)) are constructed as,⎧⎨

⎩
u(0) ∈ G̃;
d
dt
u(t) ∈ −c(u(t))∂h(u)− ∂G̃m(u(t)),

(NDMP(z))

where

c(u(t)) =
{ m∏
i=1

ci(t) | ci(t) ∈ 1−�
(
G̃i(u(t))

)
, i = 1, 2, . . . ,m

}
, (9)

where� is defined in (1).

4.5. The description of the proposed algorithm

We aim to find the approximate solutions to (BP) and (OP). Let a small tolerance ε > 0,
a point z∗ ∈WminZ� is called an ε-optimal solution to Problem (OP) if there exists an
upper bound α∗ for Problem (OP) such that α∗ − ϕ(z∗ < ε(1+ |ϕ(z∗)|). Any (x∗, y∗) ∈
XWE × Rm+ which is an optimal solution of (MP(z∗)) is called an approximate optimal
solution to Problem (BP). Below is a detailed description of Algorithm Solve (BP) to find
the approximate optimal solution (x∗, y∗) to Problem (BP).
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Algorithm: Solve (BP)
Input: A pseudoconvex problem in form of (BP)
Output: The approximate optimal solution with arbitrary error threshold

1 Choose a sufficient small tolerance level ε > 0. Solve problems (Pωi ) and (P
	
i ),

i = 1, . . . , p to determine the box [ω,	]. Set P0← [	,	], V0← {	} and
choose a direction d̂ ∈ R

p
+ (e.g. d̂ = e). for i← 1 to p do

2 zi = 	− (	i − ωi)ei, solve (NDMP(z)) with z = zi;
3 if (MP(zi)) has a solution (xi, yi) then
4 αi = h(xi, yi).
5 else
6 αi = ∞.
7 Set initial upper bound α0← min{αi | i = 1, 2, . . . , p}, k← 0 and boolean

update← False.
8 Set current best solution (x∗, y∗) corresponding to problem (MP(zi)) which

satisfies ϕ(zi) = α0.
9 for k← 1 to∞ do
10 foreach v ∈ Vk do
11 Solve (NDMP(z)) with z = v;
12 if (MP(v)) has a solution (x∗, y∗) then
13 else

14 if �i : fi(x∗) = ωi then
15 βv← ϕ(v).
16 else
17 Vk← Vk \ {v}.
18 Vk← Vk \ {v}.
19 Solve (LB(Vk)) to get a new lower bound βk and vk ∈ Vk such that

ϕ(vk) = βk; Solve problem (P2(vk)) to find an optimal solution (xk, tk) and
set wk← vk + tkd̂; zk← f (xk);

20 if wk = zk and wk
i > ωi, ∀ i then

21 Find a feasible yk satisfying (xk, yk) ∈ G;
22 if yk is found then
23 update← True.
24 else
25 update← False.
26 if update and h(xk, yk) < αk then
27 Update the upper bound αk← h(xk, yk), x∗ ← xk, y∗ ← yk.
28 if αk − βk ≤ ε(1+ |βk|) then
29 Terminate.
30 else
31 Determine the new set Vk+1 by using Procedure 1.
32 Determine the new inner approximate outcome set Pk+1← L(Vk+1);

αk+1← αk.
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5. The convergence of the proposed algorithm

The convergence of the proposed algorithm, when k is sufficiently large, is proven through
the following lemmas.

Lemma 5.1: The number k tends to infinity and

lim
k→∞

max
v∈Vk
‖wv − v‖ = 0,

where Vk denotes the set of all proper vertices ofPk and wv denotes the corresponding weakly
nondominated point of Z+ obtained by solving Problem (P2(v)).

Proof: Consider a vertex vk ∈ Pk chosen at the kth iteration and the optimal value tk of
(P2(vk)). As in (6), let wvk = vk + tkd̂, we have

Vol[vk,wk
v] = (tk)p Vol [0, d̂]. (10)

The lemma stays valid if maxv∈Vk ‖wv − v‖ = 0 at some k ≥ 0. Otherwise, there exists
vk ∈ Vk such that ‖wvk − vk‖ = maxv∈Vk ‖wv − v‖ > 0.We also havePk ⊆ Pk+1 \ (vk −
intRm+), since [vk,wvk] ⊆ Pk deduced from the definition ofwvk , the volume ofPk satisfies

VolPk+1 − VolPk ≥ Vol [vk,wk
v]. (11)

Combining (10) with (11), we obtain

VolPk+1 − VolPk ≥ (tk)p Vol [0, d̂].
Therefore,

k∑
i=0

(
VolP i+1 − VolP i) ≥

( k∑
i=0
(ti)p

)
Vol [0, d̂].

We deduce

VolZ� ≥ VolPk+1 ≥ VolPk+1 − VolP0 ≥
( k∑

i=0
(ti)p

)
Vol [0, d̂],

for all k ≥ 1. As k approaches infinity, the positive series
∑k

i=0(ti)p is upper bounded by
VolZ�/Vol [0, d̂], which implies its convergence and limi→∞ ti = 0. Since d̂ is bounded,
for any i ≥ 1, we have

lim
i→∞max

v∈Vi
‖wv − v‖ = lim

i→∞
∥∥wvi − vi

∥∥ = lim
i→∞ ti

∥∥∥d̂∥∥∥ = 0. �

Lemma 5.2: If the solution (x̄, ȳ) of Problem (BP) satisfies ∃ i : fi(x̄) = ωi, then x̄ can be
obtained by solving Problem ϕ(z̄) with z̄ is the solution of the following problemmin{ϕ(z) |
z ∈ {	− (	j − ωj)ej | j = 1, 2, . . . , p}}.
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Proof: Since (x̄, ȳ) is the solution to the problem (BP), we have

h(x̄, ȳ) ≤ ϕ(z), ∀ z ∈ {	− (	j − ωj)ej | j = 1, 2, . . . , p
}
. (12)

Consider zi = 	− (	i − ωi)ei, because fi(x̄) = ωi and f (x̄) ≤ 	, we have f (x̄) ≤ zi and
therefore x̄, ȳ is a feasible solution of the problem

ϕ(zi) = min{h(x, y) | (x, y) ∈ G, f (x) ≤ zi},
thus

ϕ(zi) ≤ h(x̄, ȳ). (13)

From (12) and (13), we must have

h(x̄, ȳ) = ϕ(zi).
Because of that, (x̄, ȳ) can be obtained by selecting best solution after solving p problems
MP(zj), j = 1, 2, . . . , p. �

Lemma 5.3: For any z ∈ Z� such that (MP(z)) has a solution, then if we continuously solve
(P2(vk)) with initial v0 ≡ z to obtain p new vk − (vki − wk

i )e
i points adding to Vk+1 and

remove any v ∈ Vk+1 from Vk+1 if MP(v) has no solution, two following statements will be
true,

(i) If � (x̄, ȳ) ∈ G such that f (x̄) ∈ MinZ ∩ (z − Rm+), we will obtain Vk = ∅when k tends
to infinity.

(ii) If ∃ (x̄, ȳ) ∈ G such that f (x̄) ∈ MinZ ∩ (z − Rm+), then we can extract a sequence
{uk}∞k=0, uk ∈ Vk with u0 ≡ z such that if wuk is the weakly nondominated point ofZ+
induced by the solution (xk, tk) of problem (P2(uk)), when k tends to infinity

lim
k→∞

∥∥wuk − f (x̄)
∥∥ = 0.

Proof: (i) Since � (x̄, ȳ) ∈ G such that f (x̄) ∈ MinZ ∩ (z − Rm+), by denoting

A = MinZ ∩ (z − Rm+
)
,

B = (z − Rm+
) ∩ {f (x) | (x, y) ∈ G} ,

we have

A ∩ B = ∅.
Therefore, we can assume that the infimum distance between these two set, which is
Hausdorff distance, is a number ε > 0.

Also, because of Lemma 5.1, we can chose a number k such that

lim
k→∞

max
v∈Vk
‖wv − v‖ < ε.

Thus, since wv ∈ A,∀ v ∈ Vk, it does not exist any v ∈ Vk such that ∃ b ∈ B : b ≤ v due to
the Hausdorff distance ε > 0.
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As a consequence, � (x, y) ∈ G such that f (x) ≤ v, ∀ v ∈ Vk, hence MP(v) attains no
solution for any v ∈ Vk and so ∀ v ∈ Vk is removed from Vk.

(ii) We assume some vk ∈ Vk satisfying vk > f (x̄) and consider p points

vk,i = vk −
(
vki − wvk,i

)
ei, i = 1, 2, . . . , p.

We will prove that ∃ i : vk,ii ≥ fi(x̄), if not, we assume vk,ii < fi(x̄), ∀ i. Besides, we also have
wvk,i ≤ vk,ii ,∀ i, therefore wvk,i < fi(x̄), ∀ i.

We can conclude that wvk < f (x̄). However, this results in a contradiction since both
wvk and f (x̄) belong to WMinZ�. Therefore, the assumption is false and we have

∃ i : vk,ii ≥ fi(x̄).

Also, since vk > f (x̄) and vkj = vk,ij , ∀ j �= i, we have

∃ i : vk,i ≥ f (x̄).

Given that vk,i is an element of Vk+1, we can use mathematical induction to derive a
sequence {uk}∞k=0 where uk is an element of Vk and u0 is equal to z. This sequence satisfies
the condition that uk > f (x̄) because u0 = z > f (x̄).

Now, we will prove that when k tends to infinity.

lim
k→∞

∥∥wuk − f (x̄)
∥∥ = 0.

Since uk+1 = uk − (uki − wuk,i)ei with some i, we have uk+1 < uk, thus sequence {uk}∞k=0
is a decreasing one, and therefore, it converges because of having a lower bound f (x̄).

If {uk}∞k=0 converges at a point u ∈ MinZ ∩ (z − Rm+) such that u > f (x̄), we have a
contradiction since u, f (x̄) ∈ MinZ ∩ (z − Rm+), hence

lim
k→∞

∥∥∥uk − f (x̄)
∥∥∥ = 0.

Combining with Lemma 5.1, for any ε > 0, we can find a ut ∈ {uk}∞k=0 such that ‖wut −
ut‖ < ε

2 and ‖ut − f (x̄)‖ < ε
2 .

We have triangle inequality,∥∥wut − f (x̄)
∥∥ ≤ ∥∥wut − ut

∥∥+ ∥∥ut − f (x̄)
∥∥ < ε.

And therefore, we must have

lim
k→∞

∥∥wuk − f (x̄)
∥∥ = 0. �

Lemma 5.4: At the kth iteration, let wvk be the weakly nondominated point of Z+ induced
by the solution (xk, tk) of Problem (P2(vk)), we consider the situation when � i : wvk,i = ωi,
when k tends to infinity

lim
k→∞

∥∥∥ϕ(f (xk))− ϕ(vk)∥∥∥ = 0.
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Proof: Given that f, g and h are continuous functionswith finite values andX is a nonempty
compact convex set, it follows that ϕ is also a continuous function with finite values.

Besides, as a result of Lemma 5.1

lim
k→∞

∥∥∥wvk − vk
∥∥∥ ≤ lim

k→∞
max
v∈Vk
‖wv − v‖ = 0.

Since � i : wvk,i = ωi, thus wvk ∈ MinZ and we have wvk = vk + tkd̂ = f (xk).
Because limk→∞ ‖wvk − vk‖ = 0 and ϕ is a continuous function, we have

lim
k→∞

∥∥∥ϕ(wvk)− ϕ(vk)
∥∥∥ = 0.

Therefore

lim
k→∞

∥∥∥ϕ(f (xk))− ϕ(vk)∥∥∥ = lim
k→∞

∥∥∥ϕ(wvk)− ϕ(vk)
∥∥∥ = 0. �

Theorem 5.5: If problem (OP) has an optimal solution, then for any given ε > 0, the
algorithm will terminate after a finite number of iterations and return an ε-optimal solution
to Problem (OP).

Proof: According to Lemma 5.2, if the global solution (x̄, ȳ) of Problem (BP) satisfies ∃ i :
fi(x̄) = ωi which means f (x̄) ∈WMinZ \MinZ , we will have x̄ obtained by the proposed
algorithm.

On the other hand, when f (x̄) is on MinZ , since Vk is the set of vertices of the inner
approximate outcome set, we must have some vk ∈ Vk such that f (x̄) ∈ MinZ ∩ (vk −
Rm+). Applying Lemma 5.3(ii), it exists a sequence pair (ut ,wut ) such that

lim
k→∞

∥∥wuk − f (x̄)
∥∥ = 0,

thus

lim
k→∞

∥∥ϕ(wuk)− ϕ(f (x̄))
∥∥ = 0,

so we can find k>0 such that ∥∥ϕ (wuk
)− ϕ(f (x̄))∥∥ < ε

2
.

Also, thanks to Lemma 5.4, we have

lim
k→∞

∥∥∥ϕ(wuk)− ϕ(uk)
∥∥∥ = 0.

According to the construction of the bound αk and βk, we have

0 ≤ αk − βk = h(xk, yk)− ϕ(vk) = ϕ(f (xk))− ϕ(vk).
In case we chose vk = uk, such that∥∥∥ϕ(f (x̄))− ϕ(uk)∥∥∥ < ε

2
,

we will obtain

0 ≤ αk − βk
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= ϕ(f (xk))− ϕ(f (uk))
= ϕ(wuk)− ϕ(f (uk))
≤ ∥∥ϕ (wuk

)− ϕ(f (x̄))∥∥+ ∥∥∥ϕ(f (x̄))− ϕ(uk)∥∥∥
< ε.

Furthermore, Lemma 5.3(i) proves that if we select a vertex vk ∈ Vk which causesMP(vk)
to have no feasible solution inMinZ ∩ (vk − Rm+), the vertex setVk will become empty in
a finite number of iterations andwe can continue for other vk ∈ Vk. Moreover, if we choose
a vertex vk ∈ Vk such that

� (x, y) ∈ G : f (x) ∈
(
vk − Rm+

)
,

problem MP(vk) will have no solution resulting in the elimination of vk from Vk and the
algorithm goes on for other another vertex.

As a result, we can conclude that the algorithm terminates in a finite number of iterations
and f (x̄) is an ε-optimal solution to Problem (OP). �

6. Computational experiments

6.1. Application to portfolio selection problems

The bilevel optimization problem (BP) can bemodelled as a class of portfolio optimization
problems. Indeed, asmentioned in previous works, the portfolio optimization problem can
be modelled as a multi-objective optimization problemMin {f (x)|x ∈ X}. For instance, in
Markowitz’s model, the two objectives are maximizing profit and minimizing risk. From
the efficient portfolio set Argmin {f (x) | x ∈ X}, we can add other constraints, such as lim-
iting profits and risks within a given range, given as the form g(x, y) ≤ 0, y ∈ Rm+. Finally, to
find the best portfolio, the DecisionMaker will provide an extra-criterion function h(x, y),
which is the upper-level objective function of the bilevel problem (BP). Below is a detailed
explanation of how to model the problem.

Markowitz’s portfolio theory assumes that investors seek the maximum feasible pro-
jected return while being risk averse. It also implies that investors pick portfolios based on
the desired return and the variance of return. The random vector R = (R1,R2, . . . ,Rn)T
in Rn represents the random returns of n assets, with p(R) being its probability distribu-
tion. The mean vector of R is denoted as L = (L1, . . . , Ln)T , and its covariance matrix is
Q = (σij)n×n, where σ 2

jj is the variance ofRj and σ 2
ij is the correlation coefficient betweenRi

and Rj for i, j = 1, . . . , n. Considering a portfolio represented by x = (x1, . . . , xn)T where∑n
j=1 xj = 1 and xj ≥ 0 for all j, the expected return is calculated as E(x) = E[RTx] =∑n
j=1 Ljxj. The variance of profit is given by V(x) = Var(RTx) =∑n

i=1
∑n

j=1 σijxjxi =
xTQx. Set M = {x ∈ Rn+ |

∑n
j=1 xj = 1}. Then the portfolio optimization problem is

therefore presented as follows.

max E(x) = E
[
RTx

]
=

n∑
j=1

Ljxj
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min V(x) = Var
(
RTx

)
=

n∑
i=1

n∑
j=1

σijxjxi = xTQx

s.t. x ∈ M.

Matching with the problem (BP), we choose f1(x) = −E(x), f2(x) = V(x) and X = M.
The Sharpe Ratio, denoted as S(x), is a metric that evaluates a portfolio’s returns

adjusted for risk. It is calculated using the formula S(x) = E(x)−rf√V(x) , where rf is the risk-
free rate. Essentially, a higher Sharpe Ratio indicates that a portfolio is yielding greater
returns for the level of risk undertaken by the investor. This index can be chosen as an
extra-criterion function to select the best portfolio with the objective of maximizing the
Sharpe Ratio function. Matching with the problem (BP), we choose h(x) = −S(x). As
proved in [37], the function h(x) is pseudoconvex.

We can add additional constraints on the limits of profit and risk. Specifically, the profit
needs to be at some minimum level E0, and the risk is less than the maximum V0 that can
be tolerated. Matching with the constraint g(x) ≤ 0 of problem (BP), we choose g(x) =
(g1(x), g2(x)), g1(x) = V(x)− V0 and g2(x) = E0 − E(x). It is easy to see that the function
g(x) is convex because E(x) is linear and V(x) is convex.

The portfolio selection modelled above is a pseudoconvex semivectorial bilevel opti-
mization problem. A numerical example of this problem will be implemented in Example
6.7.

6.2. Numerical examples

We demonstrate the efficiency of our algorithm through numerical results in this section.
The experiments were performed on 2.6GHz Intel Core i7 (four logical cores), 8 Gb RAM.
The code is implemented on Matlab R2018a. In the following examples, ‘Gap’ is defined
as:

Gap = |α − β|,
with α and β being the upper bound and lower bound to Problem (BP), respectively.

Example 6.1: Consider problem (BP) where functions are defined by

h(x) = x1 + x22
f1(x) = x21 + x22 + 0.4x1 − 4x2
f2(x) = max{−0.5x1 − 0.25x2 − 0.2,−2x1 + 4.6x2 − 5.8}

and

X = {x ∈ R2 | Ax ≤ b, x ≥ 0, c(x) ≤ 0},
where

A =

⎡
⎢⎢⎢⎢⎣

1.0 −2.0
−1.0 1.0
2.0 1.0
2.0 5.0
−1.0 −1.0

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

1.0
1.0
4.0
10.0
−1.5

⎤
⎥⎥⎥⎥⎦ ,
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Table 1. The computational result of Example 6.1.

k vk αk βk Gap

1 (0.432442, 1.067557) 1.572121 1.250000 0.322121
2 (0.573591, 0.926408) 1.431824 1.250000 0.181824
3 (0.688942, 0.811057) 1.346757 1.250000 0.096757

. . .
31 (0.996542, 0.503457) 1.250012 1.250000 0.000012
32 (0.997561, 0.502438) 1.250006 1.250000 0.000006

and

c(x) = 0.5(x1 − 1)2 + 1.4(x2 − 0.5)2 − 1.1.

Observe that h(x), f1(x) are convex functions, and hence pseudoconvex, f2(x) is the
maximum of two affine functions so that it is also a pseudoconvex function. The restraint
functions are linear to satisfy assumption (A4). At the initialization step, the box [ω,	] =
[−2.52, 0.49, 3.29, 1.20], the initial upper bound α0 = ∞ and the initial lower bound β0 =
ϕ(	) = 1.25 where ϕ is the constructed function. It is natural to choose d̂ = (1, 1)T and
ε = 0.00001. The algorithm terminates in 1.2682 seconds after 32 iterations and returns
the optimal solution x∗ = (0.997561, 0.502439) with objective value h(x∗) = 1.250006.
This result is better than those reported in [5], which are x = (0.2585, 1.2415) and h(x) =
1.7989. The computation details are given in Table 1, and more close to the exact optimal
results which are x∗ = (1.0, 0.5) with h(x∗) = 1.25.

Example 6.2: Consider the following fractional programming problem where h(x) and
f2(x) are pseudoconvex due to Theorems 2.5 and 2.6, respectively.

min h(x) = 2x1 + 3x2
4x1 + 5x2 + 10

where

f1(x) = (3x1 + x2)2

(3x1 + x2 − 1)3

f2(x) = x21 − 2x1 + x22 − 8x2
x2 + 1

and the lower-level problem is min(f1(x), f2(x)) with the feasible set

X = {x1, x2 ∈ R|2x1 + x2 ≤ 6, 3x1 + x2 ≤ 8, x1 − x2 ≤ 1, x1, x2 ≥ 1}

At the initialization step, the box [ω,	] = [0.19,−4.34, 0.42,−3.67], the initial
upper bound α0 = ∞ and the initial lower bound β0 = ϕ(	) = 0.276170 where ϕ
is the constructed function. We choose d̂ = (1, 1)T and ε = 0.01. The algorithm ter-
minates in 0.8376 seconds after 6 iterations and returns the optimal solution x∗ =
(1.020247, 1.835256) with objective value h(x∗) = 0.302334. The computation details are
given in Table 2.
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Table 2. The computational result of Example 6.2.

k vk αk βk Gap

1 (2.095784, 1.712646) 0.346225 0.276170 0.070055
2 (1.781338, 2.206333) 0.346225 0.285986 0.070055
3 (1.454576, 2.020253) 0.346067 0.285986 0.060081
4 (1.161954, 1.887563) 0.331592 0.31198 0.030346
5 (1.300950, 1.946424) 0.331592 0.315449 0.019604
6 (1.020247, 1.835256) 0.324469 0.315449 0.009020

Example 6.3: We consider the following problem where the lower problem has four
objective functions

min h(x) = 3x1 + 2x2 + 10x3 + 11
x1 + x2 + x3 + 10

where

f1(x) = 2x1 + 5x2 + 3x3 + 10
3x2 + 3x3 + 10

f2(x) = 2x1 + 4x2 + 10
4x1 + 4x2 + 5x3 + 10

f3(x) = x1 + 2x2 + 5x3 + 10
x1 + 5x2 + 5x3 + 10

f4(x) = x1 + 2x2 + 4x3 + 10
5x2 + 4x3 + 10

The feasible set for the lower-level problem is the set of positive vectors in R3+ such that

2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10

All objective functions are pseudoconvex by Theorem 2.5. At the initialization step, the
box [ω,	] = [1.00, 0.50, 1.65, 0.79, 1.17, 1.00, 3.00, 1.00], d̂ = (1, 1, 1, 1)T and ε = 0.01.
The initial upper bound α0 = ∞, and the initial lower bound β0 = ϕ(	) = 0.604. The
algorithm terminates in 1.5260 seconds after 7 iterations and returns the optimal solution
x∗ = (0.000000, 0.775596, 0.007336) with objective value h(x∗) = 0.607448. The compu-
tation details are given in Table 3.

Example 6.4: We consider an example in [31]with linear objective in the upper problem

h(x) = −x1 − 0.9

f1(x) = x1
f2(x) = x2

g(x) = x21 + x22 − 0.81
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Table 3. The computational result of Example 6.3.

k vk αk βk Gap

1 (0.000000, 0.483159, 0.697862) 0.894430 0.604000 0.290430
2 (0.000000, 0.783986, 0.483034) 0.818089 0.603704 0.214385
3 (0.000000, 0.877863, 0.084834) 0.648966 0.603704 0.045262
4 (0.000000, 0.822004, 0.292454) 0.648966 0.603704 0.045262
5 (0.000000, 0.825505, 0.127032) 0.648966 0.603704 0.045262
6 (0.000000, 0.823124, 0.223619) 0.648966 0.603704 0.045262
7 (0.000000, 0.775596, 0.007336) 0.607448 0.603704 0.003745

Table 4. The computational result of Example 6.4.

k vk αk βk Gap

1 (−0.526290,−0.473709) −1.426291 −1.800000 0.373709
2 (−0.775599,−0.224400) −1.675600 −1.800000 0.124400
3 (−0.893699,−0.106300) −1.793699 −1.800000 0.006301

and the feasible set for the lower-level problem is

X = {x ∈ [−1, 1]|x1 + x2 + 1 ≥ 0}

At the initialization step, the box [ω,	] = [−0.90,−0.90, 0.00,−0.00], d̂ = (1, 1)T and
ε = 0.01. The initial upper bound α0 = ∞, and the initial lower bound β0 = ϕ(	) =
−1.8 where ϕ is the constructed function. The algorithm terminates in 1.4638 seconds
after 17 iterations and returns the optimal solution x∗ = (−0.893699,−0.106301) with
objective value h(x∗) = −1.793699, which is significantly close to the exact optimal value
reported in [31]. The computation details are given in Table 4.

Example 6.5: We consider another example in [31]

h1(x) = (x1 − 1)2 +
14∑
i=2

x2i + 0.25

f1(x) =
14∑
i=1

x2i

f2(x) = (x1 − 0.5)2 +
14∑
i=2

x2i

X = {x ∈ R14| − 1 ≤ x1, x2, . . . , x14 ≤ 2}

At the initialization step, the box [ω,	] = [0.00, 0.00, 0.25, 0.25], d̂ = (1, 1)T and ε =
0.01. The initial upper bound α0 = ∞, and the initial lower bound β0 = ϕ(	) = 0.5
where ϕ is the constructed function. The algorithm terminates in 1.4638 seconds after
17 iterations and returns the optimal solution x∗ = (0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)with
objective value h(x∗) = 0.5 which is also the exact optimal value reported in [31]. The
computation details are given in Table 5.
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Table 5. The computational result of Example 6.5.

k αk βk Gap

1 0.812500 0.500000 0.312500
2 0.566406 0.500000 0.066406
3 0.503922 0.500000 0.003922
4 0.500015 0.500000 0.000015
5 0.500000 0.500000 0.000000

Example 6.6: We now consider the following pseudoconvex optimization problem

min h(x, y) = x21 + 2x22 + 10y21 + y22 + 11
x1 + x3 + y1 + 20

f1(x) = 2x1 + 5x2 + 3x3 + 10
3x2 + 3x3 + 10

f2(x) = 2x1 + 4x2 + 10
4x1 + 4x2 + 5x3 + 10

f3(x) = x1 + 2x2 + 5x3 + 10
x1 + 5x2 + 5x3 + 10

f4(x) = x1 + 2x2 + 4x3 + 10
5x2 + 4x3 + 10

X = {x ∈ R3+|2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10, 5x1 + 9x2 + 2x3 ≤ 10, 9x1 + 7x2 + 3x3 ≤ 10}
g1(x) = −x2 − x3 − 2y1 − y2 + 2

g2(x) = x2 + x3 − 5y1 + 2y2 − 1

y ∈ R2+

At the initialization step, the box [ω,	] = [1.14, 0.68, 0.99, 0.98, 1.27, 0.92, 1.14, 1.17],
d̂ = (1, 1, 1, 1)T and ε = 0.01. The initial bounds α0 = ∞, β0 = ϕ(	) = 0.009170.
The algorithm terminates after 5 iterations, and returns the optimal solutions x∗ =
(0.130662, 0.156198, 1.558087) and y∗ = (0.142857, 0.000000) with objective value
h(x∗, y∗) = 0.012365. The computation details are given in Table 6.

In the following example, we consider an example of the portfolio selection problem
presented in Section 6.1.

Example 6.7: In this example, we consider a portfolio selection optimization problem
proposed in [37], which is reformulated into the form of Problem (BP) with: h(x) =

Table 6. The computational result of Example 6.6.

k vk αk βk Gap

1 (0.000000, 0.422286, 1.291999, 0.142857, 0) 0.026160 0.009170 0.190285
2 (0.001831, 0.421485, 1.292799, 0.142857, 0) 0.026094 0.009170 0.016923
3 (0.329682, 0.276641, 1.437644, 0.142857, 0) 0.021261 0.009170 0.012091
4 (0.464042, 0.170190, 1.544095, 0.142857, 0) 0.021261 0.009170 0.012091
5 (0.130662, 0.156198, 1.558087, 0.142857, 0) 0.012365 0.009170 0.003195
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Table 7. The computational result of Example 6.7.

k vk αk βk Gap

1 (0.154919, 0.170694, 0.006096, 0.243734, 0.424554) −0.146438 −∞ ∞
2 (0.154760, 0.170508, 0.006114, 0.243741, 0.424874) −0.146490 −0.146494 0.000004
3 (0.154757, 0.170505, 0.006114, 0.243741, 0.424879) −0.146494 −0.146494 0.000000

−LTx−0.022√
xTQx

, f1(x) = −LTx, f2(x) = xTQx,X = {x ∈ R5+|LTx ≥ 0.25}, g(x) = xTQx
− 2.5,

Q =

⎡
⎢⎢⎢⎢⎣
4.415125 1.124907 2.310423 1.443982 1.393465
1.124907 4.074815 1.963056 1.287082 1.535600
2.310423 1.963056 9.139115 2.338314 1.983779
1.443982 1.287082 2.338314 4.431688 1.670681
1.393465 1.535600 1.983779 1.670600 5.314346

⎤
⎥⎥⎥⎥⎦

L = [0.156723, 0.158738, 0.204619, 0.216932, 0.348760]T

At the initialization step, the box [ω,	] = [−0.15, 2.45,−0.15, 2.50], d̂ = (1, 1)T and
ε = 1e− 6. The initial bounds α0 = 5.782681, β0 = ϕ(	) = 1.322750. The algorithm
terminates after 3 iterations and returns the optimal solutions x∗ = (0.154757, 0.170505,
0.006114, 0.243741, 0.424879)with objective value h(x∗) = −0.253628. From this, we cal-
culate E(x),S(x), and V(x) as 0.253628, 0.146494, 2.500000. This result is approximately
the same as that reported in [37]. The computation details are given in Table 7.

7. Conclusion

This study presents an exact algorithm for solving a class of pseudoconvex semivectorial
bilevel optimization problems where the upper objective function is scalar pseudoconvex,
and the lower one is a pseudoconvex vector function. The algorithm’s efficiency stems from
using the outcome space-cutting cone through amonotonic optimization approach and the
neural dynamic approach to solving subproblems, which is computationally efficient and
does not necessitate particular characteristics of the objective functions. The algorithm’s
convergence has been demonstrated, and its effectiveness is supported by computational
experiments.
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